On the shortest day of the year


On the winter solstice I chased a retreating moon over western Greenland and the Canadian arctic.



On this long westward journey the sun appeared to set two times, and the earth sat in pale twilight glow.


Coastal mountains rose up in the darkness, and sea ice filled the fjords that were not yet frozen.

sea ice


In the stillness of this frozen world, on a transoceanic journey costing less than a percent of my annual income, I thought about how this landscape will appear fifty years from now. It will surely have less ice, and perhaps fewer people will be flying over it. In Paris this year we came to a better climate agreement than many had imagined was possible – but a worse one than we need. We must place immense faith in our countries’ governments to make hard choices in the coming decades if even this weak agreement is to succeed. Will action come? I fear the answer is no. But I desperately hope otherwise.

Hidden treasures of the Macarangas

ant plant 1

A common sight along the roadsides and logging gaps of the lowland forests of Borneo is the slender gray trunk of a sun-loving tree with long, up-curving branches naked except for a few large leaves at the tip. These trees belong to the genus Macaranga, in the Euphorbiaceae family.

ant plant 7

They seem quite unremarkable, but working with them produces a feeling that they are not quite so simple. Most days we would cut down at least a few branches of Macaranga, preparing wood samples, then scanning and pressing leaf samples. In these moments I always felt unsettled, like something was crawling on my skin. And often I had to then flick off a large number of small black ants from my arms and legs and chest, or forcefully tear away the ones that had attached themselves to my skin with their jaws.

ant plant 2

The mystery of where all these ants were coming from was solved when we sawed through a large branch of Macaranga pearsonii.

ant plant 4

It turns out that the stems of this species are hollow. These interior galleries play home to a colony of small black ants. Presumably the ants defend the plant against its enemies, and receive shelter and resources in exchange. I can certainly verify their willingness to defend their home after cutting it in half.

This is a classical ant-plant mutualism. I was later to learn that the ants belong to the genus Crematogaster, and the species here is almost certainly Crematogaster borneensis (see Fiala et al. 1999 for a full treatment of the coevolutionary story). But two mysteries remained to me. First, how did the ants ever leave their hidden fortress worlds? I saw no exits from the thick wood of the branch. And second, what exactly did the ants receive in return for their soldiering?

ant plant 6

The first question was resolved after a bit more exploration. I found that the thick wood of the main branches transitions to thinner branches comprising a set of segments each joined to another where a leaf attached to the stem. In each of these segments was one small hole – just big enough for a single ant’s head to poke through. It is hard for me to imagine the intricate network of paths through the plant that every ant walks, but perhaps a tree is not so different from a set of underground tunnels.

ant plant 5

And the second question was resolved after a closer look at the leaves. At the base of each leaf lamina near the attachment point of the petiole, there were two small circular forms. These were extrafloral nectaries – plant structures that the ants would visit to obtain sugars and so feed themselves. I later learned that the number of extrafloral nectaries per leaf helps to determine the identify of the species.

A formidable and well-fed set of defenses. But some species in Macaranga do more to protect themselves. You may have noticed a red tint around the ants’ gallery in an earlier photograph. This species also exudes a copious bright-red latex. This is a toxic and sticky set of defense compounds meant to mechanically or chemically stop an insect attacker. In only a few seconds a thick and sticky red mess welled up from the stem, almost like blood.

ant plant 3

In most of Euphorbiaceae, this latex produces a strong painful rash for humans – luckily in this species the ants were the worst of it for me. I imagine the situation would be different for a passing caterpillar or beetle.

These Macaranga species are a marvelous example of the coevolution of insects with plants – some positive interactions, as with the ants, and some negative, as with the latex. These interactions have led to the marvelous adaptations of this species’ branches and leaves. It is a dance between species’ forms, played out over millions of years. And it only takes a small amount of careful observing to appreciate.

The things we carry for fieldwork

The experience of field ecology is not as glamorous as one might imagine. Fieldwork is mostly about carrying heavy things into and out of the forest. Curiosity, brilliance, creativity – they are are present, but far less important than sweat and sometimes blood and very rarely tears. Here are a few examples from Malaysia.

carrying 11

Some days are easy – just a light backpack with a notebook, water and a snack.

carrying 6

Other days are harder. Here we are with three gas analyzers, one spectrometer, three tripods, three coolers full of ice, five car batteries, and one computer.

carrying 2

Our vehicle can take for a short way. But in the end, it all goes up into the forest through muddy paths on shoulders and backs.

carrying 10

Some days we carry things out of the forest – here, a Macaranga branch destined for segmentation in our field camp.

carrying 3

Its leaves will be carried back through the forest and into our vehicle –

carrying 7

– and ultimately, with the rest of our gear, back into our field lab. On rainy days the leaves can double as umbrellas.

carrying 8

Some days we carry unintended things, like this leech – a major component of the ‘blood’ part of fieldwork.

carrying 5

Other days we carry equipment for our lab.

carrying 1

And other days we just carry rocks.

carrying 9

It is hard work. But the work is worthwhile. It acquires merit through its challenges. I come to love and understand the forest more deeply through suffering in it. And I appreciate our data ever more when I understand its price.

carrying 4

But sometimes a rest is nice too.

Some thoughts on oil palm

palm oil bar

Palm oil is the villain of Western markets. It appears as an ingredient in all sorts of processed foods, but comes with a bad reputation – environmentally unfriendly at best. Buying only products that don’t include it is nearly impossible, though a growing number of manufacturers are now tapping into a demand for such items. This packaged dinner from Norway, for example, advertises itself as helt uten palmeolje – entirely free of palm oil.

oil free

In the past few years I became increasingly aware of this tension, and began trying to make my own small dietary changes away from palm oil. But I was more following a trend than making choices based on facts, and the realities of oil palm agriculture remained far from my personal experience. That changed this year in Malaysian Borneo, where I have been studying the functional consequences of forest degradation. One of the major causes of forest destruction is replacement by oil palm plantations, and I got the chance to see exactly where our packaged cookies and instant noodles and laundry detergent come from.

sunset palm

Heading into the forest for work each day, I saw whole river basins and mountainsides exposed bare, covered by myriad rows of identical oil palm trees. I saw rigor and pattern imposed on the forest through the bulldozing of long roads and terraces, and imagined the silent hands of the many workers responsible for planting and trimming and fertilizing and harvesting.


The reason for all this effort is the large and heavy bunches of bright-red fruits the tree often produces. These are cut down by hand, then trucked out of the plantation.


Each fruit’s flesh hides a single inner seed, white and oily.


The seeds are then crushed, heated, and leached in an unpleasant-smelling process taking place in refinery facilities (this photo from Costa Rica).


The crude oil is finally sent off in trucks for further refinement or transformation into the products we are so familiar with. It is a long journey from tropical hillside to convenience store display.


My visceral reaction to this production scheme was dismay over the large-scale disturbance it created. I haven’t changed my mind about this, but the controversy over this crop is more nuanced than its bad reputation would suggest.

In Malaysia, palm oil provides about a half million people with jobs, and annual revenue of more than 16 billion dollars, mostly through exports to China and Pakistan. And about 35 percent of growers are smallholders rather than large companies. Many of the people I got to know had relatives who worked in the industry and were very glad for its existence.

jobs (1)

And the crop itself is highly efficient – its yield per hectare is far higher than other oil crops like in this British rapeseed field, and is achieved for much lower fertilizer and pesticide application rates as well.


On the other hand, the crop tends to be planted on land that is directly converted from primary forests with immense value in terms of biodiversity and ecosystem services. More palm oil almost always means more deforestation. These landscapes are often cleared by burning, a process that remains one of the largest contemporary sources of carbon pollution. The heavy smoke-filled air I experienced for days on end in the forest was a direct consequence of land clearance in neighboring Indonesia.


Oil palm plantations, once established, are also often responsible for high nutrient runoff from careless fertilizer application, and for high soil erosion from road construction. Labor on these plantations is sometimes forced.

The crop has major well-recognized problems. But it is not going away. The economic incentives are too great. A crop of oil palm can return anywhere from 4000 to 29000 USD per hectare over a 25 year period, compared to about 10000 USD per hectare for two-rotation logging over the same interval (Fisher et al. 2011). To compare, a cashier job in a big city might pay about 250 USD per month. Mountainsides of oil palm are mountainsides of money.

One option for preventing this land use would be REDD+ programs that provide payments for the carbon storage benefit of not destroying forests. The problem is that a market for carbon doesn’t fully exist yet, and prices are far too low to make this feasible. Current governments are willing to support prices of somewhere around 15 USD per ton of carbon stored, but the yield of oil palm relative to the forest it destroys would require the market to sustain a price of around 50 USD per ton of carbon (Fisher et al. 2011, again). Finding any buyers at this price is highly unlikely in the near future. Put a different way, the opportunity cost of conservation is somewhere around 20000 USD per hectare – and a hectare is not a very large area – only about the size of a single football field.

The alternative solution is to find ways to make oil palm agriculture more sustainable. Efforts like reductions of wasteful fertilizer application and establishment only on land of limited conservation value are a start. This enterprise, Benta Wawasan Sendirian Berhad, located near where I work, is now part of the Roundtable on Sustainable Palm Oil and has self-reported some tentative steps towards these goals. But nearly all the oil palm produced today is still far from any reasonable sustainability standards. Consumer labeling schemes to differentiate different production methods are still in their infancy, and industry definitions of sustainability leave (in my opinion) much to be desired.


Spending long days in the field with endless rows of oil palm on the horizon, it was hard not to think often about the complex issues the crop raises. I still try to avoid buying anything with palm oil as an ingredient – but I now understand much better the biodiversity and land and money and jobs that come into play every time I make that small decision. It is a start.

Something is missing

The dipterocarp forests of Sabah in Malaysian Borneo are home to some of the world’s tallest trees, with some Shorea species reaching over eighty meters in height. This scene, from the lower elevations of the nearly undisturbed Maliau Basin, is what we may imagine when thinking of pristine mature forests – immense cylindrical boles reaching skyward, scattered throughout an open understorey.


But the landscapes of Malaysian Borneo are not all like this one. Some of the country looks hardly like a forest at all. The trees are all gone. Their immense trunks are too attractive and easy a target for logging. Paper, plywood, and the export market for hardwoods supply the demand.


The result is large-scale deforestation. Modern techniques emphasize selective removal of the largest and most valuable trees, and sometimes preserve riverside buffers, but there is no escaping the heavy impact of logging. Steep slopes and easily crumbled soils make the problem worse.

log grabbing

hill loss (1)

Even in selectively logged forests like the one we are working in below, something feels wrong. Some things are missing, and new things appear in their place.

small trees

For me one of the most noticeable differences is the presence of large gaps in the canopy. Forests are naturally dynamic environments where large trees fall and expose sunlit areas in which regeneration occurs. But in these heavily logged forests, the default instead becomes large clearings of dozens of meters, brutally hot, choked by tangles of thorny lianas and spiny palms, sometimes more than two meters deep, only passable by hacking a way through with a parang. The environment is no longer friendly.

logging gap

One of the other most noticeable differences is the sound of the forest. In an undisturbed forest I expect the songs of birds, the calls of monkeys, and the rustling of leaves caused by all other manner of creatures. In a heavily logged forest, the canopy goes silent, but the air comes alive with the heavy rumbling of diesel engines cutting trunks, moving timbers onto tractors, and then hauling them away. A symphony of dust.

loading (1)


Almost eighty percent of land in Sabah has been impacted by high-impact logging or clearing in the last two decades (Bryan et al. 2013), and virgin forest within commercial forest reserves has declined by over 90% since 1970 (McMorrow & Talip 2001). This dramatic loss of forest cover has paralleled the state’s rapid economic development and diversification (timber revenue is largely retained by the state, while oil revenue primarily goes to the Malaysian federal government), and has so potentially played an important role in lifting many out of poverty. Ceasing the economic exploitation of forests would be bad in far different ways than current usage is bad.

Yet at the same time, much of the landscape feels far more like a mining operation than a sustainable forestry operation. Rates of extraction are often too high for the regeneration rates that can be sustained, and the highly disturbed forests that remain will be incapable of producing much economic value for many decades to come. As such, overall timber production has decreased sharply in the past decade (Reynolds et al. 2011). Current conservation efforts and broader implementation of reduced impact logging may help shift the situation towards a more sustainable direction, but I cannot help but wonder if the past decades of industry have done more to steal from the future than to help build it.


In collaboration with the state and the timber industry, much research is being carried out to understand the biological consequences of this disturbance. I play a small part in the BALI / SAFE (Stability of Altered Forest Ecosystems) projects aimed at addressing these questions. These data will provide a factual basis for thinking more carefully about these forests. But only personally experiencing these landscapes can shape how I feel about them. Something is missing, and I hope we will someday find it again.


A meditation on airplanes

airplanes 004

A human may walk some dozens of kilometers on a day’s ration of food. We store enough energy in our fat and muscle cells to walk additional hundreds of kilometres. Ultimately we burn through our stores and must stop. A hummingbird must eat every day, while a snake may go months between meals.

Our machines are similar. An airplane is a metallic creature that burns through a supply of fuel in order to cast itself up and across the sky to a far-away destination. It discards as it goes – and then must stop. Just as we do.

What separates machine from living being is only the details of the fuel. A plant makes its own, and an animal readily catches or hunts it on the landscape. The resources that give power and spirit to an airplane are far harder to come by, and must be mined from the earth.

I recently flew halfway around the world, London to Kuala Lumpur, as a burden in one of these metallic beasts. Medieval observers might have described the trip as an unleashing of telluric energies, but I thought about it more as a vomiting of long-buried resources from their underground home into the atmosphere.

airplanes 005

I flew these 11,200 kilometers on an Airbus A380, one of the world’s most efficient long-haul jets. The carriage of my person in this machine required the combustion of fuel containing the equivalent of approximately (1.3 million grams of carbon. That carbon almost certainly was mined from fossil sources – that is, the dead tissues of plants that were deposited over some sixty million years between the Devonian and the Permian Periods.

How long did these plants have to grow to produce enough energy to fuel my airplane and my journey? A modern tropical forest has a net primary productivity of approximately 10 million grams of carbon per hectare per year (Malhi et al. 2001).
This number represents the net amount of carbon taken up by plants from the atmosphere each year in a region about the same size as a football pitch. By dividing this number by the carbon cost of my trip, and assuming that Carboniferous forests had similar productivities as modern ones (maybe not true – Beerling & Woodward 2001), I could estimate the interval required to grow enough biomass for my trip.

airplanes 006

In fourteen hours of flying, I personally used up resources that took a square meter of forest 1,300 years to grow. An airplane is an inefficient way to travel.

Each flight uses up another small fraction of our planet’s stored resources. Each flight brings the earth one step closer to thermodynamic equilibrium. Over the past centuries we have come increasingly close to this point, drawing down more and more of our fossil fuel inheritance, and destroying an increasingly large proportion of our planet’s biomass (Schramski 2015). And the airplanes we have conjured out of aluminium and copper and other buried treasures will no longer function.

cover image

Airplanes also bring biological equilibrium. They carry not only human passengers, but also other species – just as the sailing ships that preceded them once did. Before the European conquest, the Americas had neither honeybees nor earthworms nor mosquitoes nor smallpox, all familiar facets of modern life; nor did Europe have tomato or potato or chocolate. Our ships and planes have transformed much of the Asian tropics into a land of rubber trees and oil palms, and spread diseases like avian flu far more rapidly than they could ever travel without our fossil-fueled assistance. We make plains of great biological mountains, and homogenize as we go (Dornelas et al. 2014).

Life is slow. It builds diversity and differences. Airplanes hasten our pace and destroy these things.

airplanes 003

The ecomodernist movement has argued that technological development, urbanization, and alternative energy sources will increase harmony between people and nature while simultaneously drawing billions out of poverty. In this worldview, we will not decline towards biological and thermodynamic equilibrium – instead, we all of us will all be able to fly on airplanes one day. I am not so optimistic. Ecomodernism assumes that we will get smarter and kinder faster than we get hungrier. Its agenda is neoliberal in that it assumes market solutions are sufficient to solve societal problems, and in that it proposes to take billions of people away from their land into wage-based labor. George Monbiot and Chris Smaje have both argued forcefully against ecomodernism, and the past centuries are filled with examples of how such a simplistic approach has led to increased human poverty and planetary destruction. Somewhere between these two perspectives is a viable road forward.

I think that instead we must find a slower future, and accept that our energy should come from above rather than below our planet’s surface, and that most of our kilometers should be walked and not flown. I think that we must soon abandon our airplanes, and all they represent.

(This post was written from a camp abutting a logging area in eastern Sabah, Malaysian Borneo. The photographs are of heavy smoke from human-caused fires in nearby Kalimantan. Further posts this month will be erratic and dependent on internet connectivity.)

An autumn rainbow


Before I came to the Norwegian mountains, I imagined them in a muted palette of grays and browns – heath, tundra, and rock. These were stereotypes, but not ones I found to be groundless after the experiences of a cold and foggy field season, and of hiking to the bare summits of more than a few mountains.

This year I returned during the same season and looked at these landscapes more closely, in places ranging from the mountains of Dovrefjell and Trollheimen to the Arctic coastal ecosystems of Lofoten. With a more careful eye, a full rainbow of colors revealed themselves. They were painted onto the occasional leaf, fruit, and flower, in clear view but on small enough scale to be easily missed.

Here are a few of these species in their autumn aspect.


Salix reticulata (Salicaceae), a small willow whose yellow-tinted leaves stand out against all backgrounds


Vaccinium myrtillus (Ericaceae), the bilberry, with sweet-tasting fruits that leave purple-blue memories on fingers and tongues.

purple black

Empetrum nigrum (Ericaceae), the crowberry, a shrub bearing purple-black fruits that remind me of onyx and look far better than they taste – a watery and seedy disappointment.


Eriophorum angustifolium (Cyperaceae), marsh-wool, a marvelous mat-forming sedge whose leaves turn red and whose fruits stream away on long soft white tassels.


Ranunculus glacialis (Ranunculaceae) – a high elevation buttercup whose pale petals rapidly become streaked in pink and purple, and whose flowers seem to persist far longer than any pollinator.


Rubus chamaemorus (Rosaceae) – the cloudberry, a close relative of the raspberry with orange-colored acidic fruits, here unfortunately found in an unripe state.


Drosera rotundifolia (Droseraceae), a carnivorous sundew common in wet areas, with red-purple stems and leaves and glandular hairs.

red (1)

Comarum palustre (Rosaceae), the marsh cinquefoil, a peat specialist whose orange-red leaves make a beautiful contrast against their mossy habitat.

red 2

Chamaepericlymenum suecica (Cornaceae), a bunchberry related to the dogwood tree, with bright-red and bitter-tasting fruits.


Rhodiola rosea (Crassulaceae), king’s crown, with rainbow-colored red-green leaves that have many medicinal uses.


Arctous alpinus (Ericaceae), a dwarf shrub whose prominently-veined leaves turn a brilliant scarlet color.

Although all of these species have circumboreal distributions (occurring at high latitudes around the northern hemisphere), most were almost entirely new to me. Only the Rhodiola and the Drosera occur in the Rocky Mountains I know much better, and there the Drosera is a very rare species restricted to rapidly disappearing habitats. The major factor is probably latitude – some of these Norwegian photographs were taken above 68°N, while my field sites in Colorado are closer to 38°N. The high elevation of the Colorado sites may counterbalance their relatively southern location and allow a few species to extend their ranges that far south.

It is a pleasure to find such bright colors at this time of year. The prevalence of red leaves and fruits is a marked contrast to many North American landscapes that are more dominated by yellow hues. Why should this be? Adaptive explanations have focused on protection from ultraviolet radiation or signaling to other species, but it’s unclear why patterns of redness would be stronger on one continent than another. A better non-adaptive explanation is that it is an artifact of evolutionary history and biogeography. I’ve written about this topic before, but seeing these red colors again after a year away from Europe renewed the pleasure of thinking about this pattern. Mountains are full of surprises.


Get every new post delivered to your Inbox.

Join 82 other followers